
CS395T: Continuous Algorithms, Part XVIII
Restricted Gaussian dynamics

Kevin Tian

1 Restricted Gaussian oracle
The central object of this lecture is the following type of oracle.

Definition 1 (Restricted Gaussian oracle). We say O is a restricted Gaussian oracle (RGO) for
ψ : Rd → R if for any v ∈ Rd and λ ∈ R≥0, O(λ,v) returns a sample from the density on Rd

∝ exp

(
−λ

2
‖x− v‖22 − ψ(x)

)
. (1)

The first thing to note is the similarity between Definition 1 and that of a proximal oracle (Def-
inition 7, Part II), which asks to minimize the potential ψ + λ

2 ‖· − v‖22 rather than sample from
a density defined by it. Similarly to the role of the proximal oracle in the proximal point method
(Section 2, Part III), we will see in Section 1 of this lecture how to design samplers when granted
access to an appropriate RGO. This lets us effectively decouple sampling algorithms into an “outer
loop” proximal point method and an “inner loop” efficient implementation of each RGO.

In this introductory section, we first answer the question: when should we expect ψ to support
an efficient RGO? Observe that this oracle effectively asks us to sample the density exp(−ψ(x))
“restricted” by the Gaussian exp(v, 1

λId). A basic setting is when ψ is “simple” enough, e.g.,
coordinatewise separable (ψ(x) = ‖x‖1 or the indicator of an axis-aligned box), or a sufficiently
uncomplicated function of ‖·‖2 that we can exactly integrate. It is relatively reasonable to assume
that basic numerical operations in one dimension, such as integration, can be performed in constant
time. For these types of ψ, our assumption gives an exact O(d)-time RGO.

The real power of the RGO framework is as a generic reduction for structured sampler design.
Assuming that ψ has some additional structure, we can often use the additional regularization af-
forded by an RGO (via tuning λ) to attain better parameter tradeoffs for algorithms. For example,
in Section 1.2 we explain how proximal sampling methods generically improve dependences on the
condition number κ to linear, for high-accuracy well-conditioned samplers.

1.1 Well-conditioned densities
In this section, we prove that extremely well-conditioned ψ+ λ

2 ‖· − v‖22 admit efficient RGOs. For
simplicity, we assume the ability to minimize the potential ψ+ λ

2 ‖· − v‖22; an efficient optimization
algorithm in the well-conditioned regime we consider is provided in Theorem 4, Part II.

Our strategy is based on rejection sampling, for which we first provide a generic analysis.

Lemma 1. Let π, µ be probability densities over the same sample space Ω, and suppose π ∝ P ,
µ ∝ Q for nonnegative functions P : Ω→ R≥0, Q : Ω→ R≥0. Suppose that

P (ω) ≤ Q(ω) for all ω ∈ Ω.

Let NP :=
∫

Ω
P (ω)dω, NQ :=

∫
Ω
Q(ω)dω. There is an algorithm that samples from π, using an

expected NQ
NP

samples from µ, NQNP evaluations of Q, and NQ
NP

evaluations of P .
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Proof. The algorithm is to repeatedly sample ω ∼ µ, and accept the sample with probability
P (ω)
Q(ω) ≤ 1. The probability that any given loop of the algorithm returns a sample is∫

Ω

µ(ω) · P (ω)

Q(ω)
dω =

∫
Ω

Q(ω)

NQ
· P (ω)

Q(ω)
dω =

NP
NQ

,

and conditioned on returning, the output density is ∝ Q(ω) · P (ω)
Q(ω) = P (ω) as desired.

We now give an RGO when the condition number of ψ + λ
2 ‖· − v‖22 is nearly 1.1

Lemma 2. Let ψ : Rd → R be L-smooth and µ-strongly convex, and let (λ,v) ∈ R≥0×Rd. Assume
we know x? := argminx∈Rdψ(x) + λ

2 ‖x− v‖22. Then we can sample from the density (1) in

O

((
L+ λ

µ+ λ

) d
2

)
expected value queries to ψ,

and O

((
L+ λ

µ+ λ

) d
2

d

)
expected additional time.

Proof. Throughout this proof let U(x) := ψ(x) + λ
2 ‖x− v‖22. We instantiate Lemma 1 with

P (x)← exp (−U(x)) , Q(x)← exp

(
−U(x?)− µ+ λ

2
‖x− x?‖22

)
.

Under our computational model, we can sample exactly from µ ∝ Q in O(d) time, because µ =
N (x?, 1

µ+λ ). The fact that P ≤ Q pointwise follows from strong convexity. Finally, following
notation from Lemma 1, we can bound

NQ
NP
≤

∫
exp

(
−U(x?)− µ+λ

2 ‖x− x?‖22
)
dx∫

exp
(
−U(x?)− L+λ

2 ‖x− x?‖22
)
dx

=

(
L+ λ

µ+ λ

) d
2

,

where the inequality above used the pointwise bound U(x) ≤ U(x?) + L+λ
2 ‖x− x?‖22, and the

equality plugged in the exact normalizing constants for multivariate Gaussians.

Lemma 2 shows that when ψ is L-smooth and µ-strongly convex, we can implement an RGO for it
using only a constant number of calls to a value oracle, in regimes where the regularization param-
eter λ� Ld is sufficiently large. Indeed, in this regime, L+λ

µ+λ = 1 +O( 1
d ), and hence the expected

value query complexity in Lemma 2 is O(1). This theme of using the additional regularization
afforded by an RGO to enable more efficient algorithms is prominent in this framework. Of course,
there is a tradeoff: larger λ means the density (1) drifts further from that ∝ exp(−ψ), requiring
more outer loop iterations. This point will be discussed in depth in Section 2.

One other point we remark on is that Lemma 2 only yields an inexact proximal point oracle.
This is because rejection sampling is never guaranteed to return in finite time (though, if it is
expected to return in T iterations, then it will with probability ≥ 1 − δ in O(T log( 1

δ )) iterations
by standard binomial concentration). This typically does not pose an issue when RGOs are used
in an outer loop with total variation distance guarantees. In particular, any total variation error
in the RGO implementation can be “charged” to the overall error via a union bound argument (see
discussion after Fact 1, Part XIV). When the outer convergence metric is more complex, e.g., a
Rényi divergence, more careful arguments can sometimes still be used to retain these alternative
guarantees under inexact RGO implementations (cf. Lemma 5.2, [AC24]).

1The RGO implementation in Lemma 2 is a simplification of the original construction in Section 4, [LST21], due
to Nima Anari as developed in his course notes [Ana23].
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1.2 Generic reduction framework
To give the reader some sense of how to apply the result of Lemma 2 to design efficient sampling
algorithms, let us first state a result we will prove in Section 2.

Theorem 1 (Well-conditioned proximal sampling). Let V : Rd → R be µ-strongly convex, let
π? ∝ exp(−V ), and let η ≤ 1

µ . Consider the algorithm which initializes x(0) ← argminx∈RdV (x),
and then iterates for all 0 ≤ k < K:

y(k) ∼ density ∝ exp

(
− 1

2η

∥∥∥x(k) − ·
∥∥∥2

2

)
,

x(k+1) ∼ density ∝ exp

(
−V (·)− 1

2η

∥∥∥y(k) − ·
∥∥∥2

2

)
.

(2)

Then letting π(K) denote the law of x(K),

DKL

(
π(K)‖π?

)
≤ ε2, for K ≥ 2

ηµ
log

(
d

ηµε2

)
.

To give some intuition for the updates in (2), observe that they alternate sampling from the
conditional marginals of the density on (x,y) ∈ Rd × Rd that is

∝ exp

(
−V (x)− 1

2η
‖x− y‖22

)
.

This is the joint density of x ∼ π? and y | x ∼ N (x, ηId), so the x marginal is precisely π?. In
Section 2, we show that Theorem 1 implements a reversible Markov chain with stationary measure
π?, and explicitly provide a bound on its rate of relative entropy decay in each iteration.

Each y(k) iterate in Theorem 1 is straightforward to sample: it is just a scaled Gaussian centered
at x(k). On the other hand, updating to x(k+1) is effectively implementing an RGO with ψ ← V ,
v ← y(k), and λ ← 1

η . Notably, the presence of the quadratic 1
2η

∥∥· − y(k)
∥∥2

2
can significantly

improve the conditioning of this RGO subproblem for a judicious choice of η.

Let us give a sense of how to apply Theorem 1, starting with the well-conditioned setting.

Corollary 1. Let V : Rd → R be L-smooth and µ-strongly convex, and let π? ∝ exp(−V ), κ := L
µ ,

ε ∈ (0, 1). There is an algorithm that samples within ε total variation distance of π?, using

O

(
κd log2

(
κd

ε

))
queries to V.

Proof. The algorithm is Theorem 1, with η ← 1
Ld , and with final KL divergence error ε2 ← 1

2ε
2.

By Pinsker’s inequality, this implies the final distribution π(K) has total variation distance ≤ ε
2

from π?. We implement each RGO required by Theorem 1 with failure probability ε
2K by boosting

the success probability of Lemma 2. Because the condition number

L+ 1
η

µ+ 1
η

≤ L(d+ 1)

Ld
≤ 1 +

1

d

is bounded, each RGO call only requires O(log(κdε )) queries to achieve ε
2K failure probability.

Corollary 1 gives a simple recipe for quadratically improving our somewhat tedious analysis of
MALA from Section 3, Part XVII (which admittedly was quite loose). It replaced our challenging
task, sampling from π?, to sampling from ≈ κd regularized densities, each so well-conditioned that
we could obtain a sample (via Lemma 2) using nearly a constant number of queries.

More interestingly, Corollary 1 can be further improved if an algorithm is designed with improved
dependence on d (regardless of its native dependence on κ). This is done via a simple reduction.

Corollary 2. If there is an algorithm which, given oracle query access to L-smooth and µ-strongly
convex V : Rd → R, uses a total of T (κ, d, ε) queries to achieve total variation distance ε, there is an
algorithm using K · T (2, d, ε

2K ) queries to achieve total variation distance ε, for K = O(κ log(κdε )).
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Proof. We apply Theorem 1 with the stated value of K, and η = 1
L , such that it guarantees ε

2
total variation distance from π? assuming exact RGOs. For this value of η, all subproblems in (2)
are either an exact Gaussian sample, or an RGO with condition number

L+ 1
η

µ+ 1
η

≤ 2L

L
= 2.

Each of these K RGO subproblems can be implemented up to ε
2K total variation distance using

T (2, d, ε
2K ) oracle queries by assumption, and the conclusion follows from a union bound.

For example, suppose there is an algorithm that implements sampling of κ-well-conditioned den-
sities using f(κ)

√
d polylog(dε ) queries to a gradient oracle, for an arbitrary function f (e.g.,

polynomial, exponential, or even larger). Then just applying Corollary 2 improves the runtime to
O(κ
√
d polylog(κdε )), i.e., the function f(κ) can be reduced to linear in κ without loss of generality!

In fact, the currently-fastest algorithm for sampling κ-well-conditioned densities in Rd is obtained
in this way ([AC24], see Remark 1 and Section 4, Part XVII).

We discuss additional applications of the RGO to sampling from other structured density families,
including log-Lipschitz densities, composite densities, finite sums, and general logconcave sampling,
as well as proposed non-Euclidean generalizations, in Section 3.

2 Proximal point method for sampling
In this section, we prove Theorem 1. We mention that the key will to be establish a relative entropy
contraction bound for the iteration (2), at a rate of 1−O(ηµ) per iteration.

It is straightforward to prove that (2) mixes rapidly in χ2 divergence at the rate of 1 − O(ηµ).
Indeed, π? satisfies Ω(

√
µ)-isoperimetry by using Lemma 6, Part XVII, and x,x′ ∈ Rd with

‖x− x′‖2 = Θ(
√
η) have transition distributions that overlap by Ω(1) in total variation, using

a similar calculation to Eq. (18), Part XVII.2 This yields a Ω(
√
ηµ) conductance bound (Proposi-

tion 4, Part XV), a.k.a. an Ω(ηµ) contraction in relative variance (Proposition 1, Part XV).

It is more subtle to prove that (2) mixes rapidly in relative entropy. We will in fact show that
these updates contract in W 2

2 , which due to the specific form of the iterations, we can then relate
to DKL error. As a starting point, we show that (2) is reversible with respect to π?.

Lemma 3. In the setting of Theorem 1, the updates (2) (viewed as a transition distribution from
x(k) → x(k+1)) are reversible with respect to π? (and hence have stationary density π?).

Proof. Let π?ext be the density on (x,y) ∈ Rd × Rd that is

∝ exp

(
−V (x)− 1

2η
‖x− y‖22

)
.

Observe that from x(k) ← x, the product of π?(x) and Tx(x′) for any x′ ∈ Rd is∫
π?(x)π?ext((x,y) | x)π?ext((x

′,y) | y)dy =

∫
π?ext(x,y)π?ext(x

′,y)∫
z
π?ext(z,y)dz

dx.

This is because the transition density is one round of alternating sampling from the conditional
marginals of π?ext. The final expression is a symmetric function of x,x′, and hence the Markov
chain is reversible with respect to π?. Stationarity follows from Eq. (4), Part XV.

Next, we provide the claimed W 2
2 contraction bound.

Lemma 4. In the setting of Theorem 1, let π(k) denote the law of x(k) for all 0 ≤ k ≤ K. Then,

W 2
2

(
π(k+1), π?

)
≤ 1

(1 + ηµ)2
W 2

2

(
π(k), π?

)
for all 0 ≤ k < K.

2Formally, the yk step in (2) has this amount of overlap for nearby xk, but it is straightforward to show that
the xk+1 step cannot worsen the overlap, e.g., via Lemma 2, Part XV.
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Proof. To ease notation throughout this proof, for all y ∈ Rd we define the induced density

π?y(x) ∝ exp

(
−V (x)− 1

2η
‖x− y‖22

)
. (3)

We will construct a coupling between the iterates x(k+1), obtained via running (2) from x(k) ∼ π(k),
and x

(k+1)
? , obtained via running (2) from x(k) ← x

(k)
? ∼ π?, that witnesses the claimed inequality.

In particular, observe that x(k+1)
? ∼ π?, as π? is the stationary density for (2) (Lemma 3). We also

let y(k)
? denote the intermediate iterate in (2) initialized at x(k)

? .

First, let Γ(k) be the optimal coupling between π(k) and π? that achieves W 2
2 (π(k), π?), i.e.,

E
(x(k),x

(k)
? )∼Γ(k)

[∥∥∥x(k) − x
(k)
?

∥∥∥2

2

]
= W 2

2

(
π(k), π?

)
.

By coupling the random Gaussian ξ ∼ N (0d, Id) used in the updates y(k) ← x(k) +
√
ηξ and

y
(k)
? ← x

(k)
? +

√
ηξ in the first line of (2), we obtain a coupling Γ(k+ 1

2 ) of (y(k),y
(k)
? ) satisfying

E
(y(k),y

(k)
? )∼Γ(k+1

2
)

[∥∥∥y(k) − y
(k)
?

∥∥∥2

2

]
= W 2

2

(
π(k), π?

)
.

Next, π?
y(k) and π?

y
(k)
?

defined via (3) are both µ+ 1
η -strongly logconcave. Thus, they satisfy Tala-

grand’s transportation inequality (Lemma 13, Part XVII) and a log-Sobolev inequality (Theorem
4, Part XVII). This yields the comparison, for any pair of (y(k),y

(k)
? ) ∈ Rd × Rd,

W 2
2

(
π?y(k) , π

?

y
(k)
?

)
≤ 2

µ+ 1
η

DKL

(
π?y(k)‖π?

y
(k)
?

)

≤ 1(
µ+ 1

η

)2 Ex∼π?
y(k)

∥∥∥∥∥∇ log

(
π?
y(k)(x)

π?
y
(k)
?

(x)

)∥∥∥∥∥
2

2


=

1(
µ+ 1

η

)2 Ex∼π?
y(k)

[∥∥∥∥∇( 1

2η

∥∥∥x− y(k)
∥∥∥2

2
− 1

2η

∥∥∥x− y(k)
∥∥∥)∥∥∥∥2

2

]

=
1

(1 + ηµ)
2

∥∥∥y(k) − y
(k)
?

∥∥∥2

2
.

(4)

The first line used Talagrand’s transportation inequality, the second used the log-Sobolev inequality
(in Lemma 8, Part XVI), the third used the formula for π?y in (3) (as normalizing constants do not
affect ∇ log), and the fourth used that the gradient is independent of x ∼ π?

y(k) .

Now, consider the coupling that draws (y(k),y
(k)
? ) ∼ Γ(k+ 1

2 ) and then conditionally couples
x(k+1) ∼ π?

y(k) and x
(k+1)
? ∼ π?

y
(k)
?

in the way that achieves (4). This is an overall coupling of

π(k+1) and π? that witnesses the contraction in the lemma statement.

We additionally require that the KL divergence satisfies the data processing inequality. Intuitively,
this well-known property says that any joint postprocessing of random variables can only improve
the KL divergence between them. The proof is a simple application of Jensen’s inequality.

Lemma 5. Let Ω be some sample space that distributions P,Q are supported on. Let f : Ω→ Ω′

be arbitrary, and let P f denote the density of f(ω) for ω ∼ P , and similarly define Qf . Then,

DKL
(
P f‖Qf

)
≤ DKL (P‖Q) .
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Proof. Let Ωω′ := {ω ∈ Ω | f(ω) = ω′} be the preimage of ω′ ∈ Ω′. Then,

DKL
(
P f‖Qf

)
=

∫
Ω′

log

(
P f (ω′)

Qf (ω′)

)
P f (ω′)dω′

=

∫
Ω′

log

(∫
Ωω′

P (ω)dω∫
Ωω′

Q(ω)dω

)(∫
Ωω′

P (ω)dω

)
dω′

≤
∫

Ω′

(∫
Ωω′

log

(
P (ω)

Q(ω)

)
P (ω)dω

)
dω′ = DKL (P‖Q) .

The only inequality viewed log(P (ω)
Q(ω) )P (ω) as a realization of X log(X) for a random variable

X = P (ω)
Q(ω) , for ω drawn from the conditional distribution of Q(· | ω ∈ Ωω′). By convexity of the

function X → X log(X), this shows that the last line above holds:∫
Ωω′

P (ω)dω∫
Ωω′

Q(ω)dω
log

(∫
Ωω′

P (ω)dω∫
Ωω′

Q(ω)dω

)
= Eω∼Q(·|Ωω′ )

[
P (ω)

Q(ω)

]
log

(
Eω∼Q(·|Ωω′ )

[
P (ω)

Q(ω)

])
≤ Eω∼Q(·|Ωω′ )

[
P (ω)

Q(ω)
log

(
P (ω)

Q(ω)

)]
=

1∫
Ωω′

Q(ω)dω
·
∫

Ωω′

log

(
P (ω)

Q(ω)

)
P (ω)dω.

This yields the following corollary on KL contraction for Markov processes.

Lemma 6. Let Pξ, Qξ be distributions supported on Ω, indexed by a random variable ξ ∼ π. Let
P̃ be the joint distribution of (ω, ξ) for ξ ∼ π and then ω ∼ Pξ, and similarly define Q̃. Finally,
let P,Q be the marginal distributions of P̃ , Q̃ on Ω (i.e., averaged over ξ ∼ π). Then,

DKL (P‖Q) ≤ Eξ∼π [DKL (Pξ‖Qξ)] .

Proof. This follows from

DKL (P‖Q) ≤ DKL

(
P̃‖Q̃

)
= Eξ∼π

[
Eω∼Pξ

[
log

(
P̃ (ω, ξ)

Q̃(ω, ξ)

)]]

= Eξ∼π

[
Eω∼Pξ

[
log

(
Pξ(ω)

Qξ(ω)

)]]
= Eξ∼π [DKL (Pξ‖Qξ)] .

where we used the data processing inequality (Lemma 5) on the function f(ω, ξ) = ω.

We are now in good shape to complete our proof of Theorem 1.

Proof of Theorem 1. First, recall from Lemma 5, Part XVI thatW 2
2 (π(0), π?) ≤ 2d

µ for our choice of
initialization (i.e., a point mass at the minimizer of V ). Thus, after the stated number of iterations
K, we have by repeatedly applying Lemma 4 that

W 2
2

(
π(K−1), π?

)
≤W 2

2

(
π(0), π?

)
· ε

2µη

d
≤ 2ηε2.

We now show this suffices for the stated KL bound. We follow notation in Lemma 4, whose proof
provides a coupling Γ(K− 1

2 ) between y(K−1) and y
(K−1)
? satisfying

E
(y(K−1),y

(K−1)
? )∼Γ(K− 1

2
)

[∥∥∥y(K−1) − y
(K−1)
?

∥∥∥2

2

]
≤ 2ηε2.

Moreover for every realization of (y(K−1),y
(K−1)
? ), the derivation in (4) shows

DKL

(
π?y(K−1)‖π?

y
(K−1)
?

)
≤ 1

2η2(µ+ 1
η )

∥∥∥y(K−1) − y
(K−1)
?

∥∥∥2

2
≤ 1

2η

∥∥∥y(K−1) − y
(K−1)
?

∥∥∥2

2
.
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Finally, applying Lemma 5 with ξ = (y(K−1),y
(K−1)
? ) and π = Γ(K− 1

2 ) gives the desired claim:

DKL

(
π(K)‖π?

)
≤ E

(y(K−1),y
(K−1)
? )∼Γ(K− 1

2
)

[
DKL

(
π?y(K−1)‖π?

y
(K−1)
?

)]
≤ ε2.

The proof of Theorem 1 given in this section is based on the presentation in [LST21]. Following
this result, multiple alternative proofs of Theorem 1 (which extend to more general settings as
well) have been found, which we briefly describe here.

In [CCSW22], the step from x(k) to y(k) in (2) is viewed as a forward heat flow, i.e., the solution
to the pure drift equation dxt = dBt, where x(k) = x0 and y(k) = xη. This results in y(k) ∼
N (x(k), ηId) as desired by the update (2). On the other hand, the step from y(k) to x(k) is viewed
as a backwards heat flow, i.e., the backwards evolution of Brownian motion conditioned on an
endpoint (the state of the stochastic process at time η). We will discuss tools for formalizing this
idea in the following lecture on diffusion models, where similar ideas are employed.

Leveraging this perspective allows [CCSW22] to develop fairly explicit formulas for the change in
relative entropy after both the forwards and backwards heat flow steps, akin to the entropy decay
bound in Lemma 10, Part XVI. Intuitively, the heat flow toolbox provided by [CCSW22] gives a
way of deriving a “dynamic” stochastic process that interpolates between the “static” updates (2),
which only care about the endpoints of the stochastic process. This gives a way of viewing the
RGO as a continuous process, making it more amenable to the stochastic analysis tools from Part
XVI and avoiding much of the discretization tedium in Part XVII. Interestingly, via their heat flow
proof strategy, [CCSW22] show that Theorem 1 continues to hold under a log-Sobolev constant
of 1

µ , even when the target is not logconcave. They also give weaker convergence results in χ2

parameterized by the Poincaré constant, and extensions to other natural functional inequalities.

Finally, [CE22] took this view a step further and developed a general theory for Markov chains
induced by localization processes. Roughly speaking, in the framework of [CE22], a localization
process is any family of (random) densities {πt}[0,η], such that π0 = π? is a target stationary
density, and Eπt(x) = π0(x) pointwise on x ∈ Rd. This can be viewed as a random density-valued
martingale process, that induces a Markov chain by first randomly evolving a current density to
time η, and then collapsing it back to time 0 via posterior sampling. Moreover, if all of the densities
πt(x) satisfy a functional inequality (e.g., log-Sobolev inequality), then [CE22] use the martingale
property to show that the induced Markov chain converges quickly to the target density π?.

By taking the view of y(k) as the convolution of x(k) with a noisy channel (i.e., Gaussian), and
x(k+1) as a sample from the updated posterior distribution, [CE22] showed that the RGO is in
fact the Markov chain induced by a special localization process called stochastic localization, the
subject of our final lecture. The improved log-Sobolev constant of the convolved densities due to
the Gaussian component (cf. Theorem 4, Part XVI) then yields relative entropy decay.

3 Additional applications

3.1 Structured logconcave sampling
kjtian: TODO: discuss [LST21, FYC23, GLL24].

Log-Lipschitz densities.

Composite densities.

Finite sums.

3.2 General logconcave sampling
kjtian: TODO: discuss [KVZ24, KZ24, KZ25, KV25].
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3.3 Non-Euclidean generalizations
kjtian: TODO: discuss [GLL+23, HHBE24].
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Source material
Portions of this lecture are based on reference material in [Che24], as well as the author’s own
experience working in the field.
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